Общие сведения о методе МРТ

Общие сведения

Метод медицинской диагностики - магнитно-резонансная томография (МРТ) основан на физическом явлении магнитного резонанса протонов водорода в магнитном поле в ответ на воздействие радиоволн. Высокая эффективность и абсолютная безвредность использования этого метода сделали его самым удобным и информативным на сегодняшний день в медицинской визуализации. Это позволяет использовать МРТ для разных возрастных категорий пациентов - детей, подростков, взрослых и пожилых. С помощью МРТ можно осуществлять исследования различных органов и систем, а так же косвенно или на прямую оценивать их функции.

Типы магнитно-резонансных томографов

  • Низкопольные томографы 0,2-0,5 Тесла,
  • Высокопольные томографы 1,0-3,0 Тесла,
  • Сверхвысокопольные томографы 3,0-9,0 Тесла и более.

type_of_mri_scanner

Низкопольные томографы имеют открытый контур - т.е. представляют собой 2 крупные пластины постоянного магнита расположенные друг на против друга (сверху и снизу от пациента или справа и слева от пациента). По сути со всех сторон, кроме спереди и сзади пациент находится в открытом пространстве. Это подходит для пациентов с клаустрофобией и лишь в выраженным случаях боязни замкнутого пространства (люди которые не могут ездить в лифтах и метро) данные томографы не подходят для данных пациентов.

На данном примере сопоставления срезов пояснично-крестцового отдела позвоночника показано примерное качество снимков, сделанных на разных аппаратов с разным напряжением магнитного поля (от низкого до высокого - от 0,3 Тесла до 1,5 Тесла). Очевидно, что чем выше напряженность магнитного поля - тем лучше качество картинки. Но, не стоит впадать в заблуждение линейной зависимости "чем сильнее - тем лучше".

type_of_mri_scanner_image

Всё зависит не только от напряженности магнита, но и от качества катушек, которые надевают на пациента, от софта, обрабатывающего изображения из сырых данных, настройки оборудования, поведения пациента во время исследования (важно сохранять неподвижность и дисциплинированно выполнять команды), а так же от квалификации оператора МРТ, проводящего исследование.

Высокопольные томографы имеют закрытый контур - т.е. могут иначе называться "закрытыми", представляют собой длинную трубу с открытыми концами (через которые пациент заезжает на столе внутрь и по сути находится в "замкнутом" пространстве (спереди, сзади, слева и справа везде стенки, а сверху и снизу труба томографа не закрывается - не полностью замкнутое пространство). Данные положение пациента в течении исследования 15-45 минут может быть затруднительным у больных с клаустрофобией.

Плоскости сканирования и срезы

В МРТ как и в анатомии тело человека традиционно разделено на три плоскости и три ости. На изображении ниже представлены основные плоскости и срезы, которые им соответствуют.

NAPRAVLENIY-SREZOV

МРТ позволяет увидеть изменения внутренних органов человека при различных заболеваниях не контактируя с организмом и не нарушая его работы, чем всем остальные обследования в медицине на сегодня не обладают. В ходе исследования происходит получение изображения в разнообразных плоскостях, из которых наиболее часто используются продольная (сагиттальная), поперечная (аксиальная) и фронтальная (корональная).

На этом изображении (ниже) мы стараемся передать вам принцип расположения срезов друг к другу.

slice_reconstruction

Сканирование начинается всегда с расположения пациента в томографе и после этого томограф проводит ряд прицельных срезов низкого качества. Это так называемый прицельный снимок или localizer. Многие специалисты (врачи не МРТ) ошибочно воспринимают их как ВСЁ исследование целиком и думают что это МРТ плохого качества, хотя это в очередной раз доказывает сложность работы врача и оператора МРТ и отражает пренебрежительное и поверхностное отношение к работе врачей-рентгенологов.

localizer_mri

После проведения прицельного (разметочного или рекогносцировочного) сканирования осуществляется выставление плоскостей срезов, с соблюдением строгих анатомических ориентиров по традиционным осям. Срезы выставляются в определенном числе со специально заданными параметрами. Число срезов и их направления не у всех одинаковое и зависит от выявляемых патологических изменений в организме, порой находимых прямо непосредственно в ходе проведения данного исследования. Это не позволяет полностью стандартизировать исследование одно для всех. При этом различное число срезов и дополнительные программы ведут к увеличению время сканирования, что так же должно адекватно осознаваться пациентом, врачом и другими пациентами ожидающими свою очередь.

scan_plan_2

После проведения сканирования получаются срезы в трёх плоскостях.

scan_plan

Рабочая станция оператора МРТ достаточно сложный инструмент с массой настраиваемых параметров для достижения оптимального результата визуализации. В таком большом количестве параметров используются время TE, время релаксации ядер водорода TR, матрица, толщина среза, направление срезов, уровень взвешенности, поле обзора FOV, число срезов и многие другие. Большинство врачей, которые не разу не работали на МРТ не представляют себе сложности выполнения исследования, а почти все пациенты считают, что исследование проводится нажатием одной кнопки. А рекомендации лечащего врача о "толщине среза в 1 мм" кажутся просто анекдотическими, когда следует просто принять во внимание задачи становящиеся перед данным исследование, спланировать много данных, лишь одно из которых составляет толщину среза и совершенно не является решающим для получения оптимального изображения. Кто бы не столкнулся с этой статьёй - имейте в виду, что врач МРТ и оператор МРТ профессионалы, знают свою работу гораздо лучше, чем поверхностные представления многие из врачей, обременённых учеными степенями и иными регалиями (будьте скромны и уважайте труд рентгенологов - это прибавит вам уважения со стороны диагностического отделения).

scan_plan_3

Импульсные последовательности

МРТ использует разные режимы визуализации, из которых наиболее часто используются: Т1, Т2, Flair, Stir. Эти режимы позволяют увидеть ткани и жидкости организма обладающие разными физическими свойствами в зависимости о содержания в них воды: кровь, жир, мягкие ткани и т.д.

В режиме Т1 - жидкость темная, а жир светлый, в режиме Т2 - жир и жидкость светлые, в режиме Stir – вода светлая, а жир темный. Flair - используется для изучения вещества головного мозга.

mri_impulse_sequence

Основные отличия МРТ от КТ

МРТ и КТ используют принципиально различные физические основы для получения данных изображения. МРТ использует магнтиное поле и радиоволны (безвредно для человека), а КТ использует рентгеновские лучи (в процессе проведения КТ происходит облучение организма, однако в небольшой дозе и при частом использовании может быть вредным для человека).

Преимущества МРТ:

  • хорошая тканевая контрастность мягких тканей (хорошо видны структуры мягких тканей, или структуры, содержащие жидкость: внутренние органы брюшной полости, малого таза, мозг, мышцы, связки, мениски),
  • безвредность для организма (можно делать сколь угодно долго и часто),
  • позволяет увидеть кровоток в сосудах (артериях и венах) мозга без контраста (!),
  • позволяет проводить функциональные исследования: функциональное МРТ, спектроскопия, безконтрастаня перфузия.

Преимущества КТ:

  • хорошая тканевая контрастность плотных тканей (хорошо видны костные структуры, патологические изменения костей и лёгочная ткань),
  • быстрота исследования (практически любое исследование на КТ идёт не более 1 минуты),
  • практически полное отсутствие противопоказаний к исследованию (исследование может пройти любой больной),
  • нет закрытого пространства (стол проезжает через узкую раму томографа, нет трубы или тоннеля).
  • КТ перфузия имеет большее разрешение и скорость проведения, чем на МРТ.

Лучше всего продемонстрировать отличие МРТ от КТ на примере сопоставления снимком пояснично-крестцового отдела позвоночника на МРТ (верхняя строчка - в режиме Т2, Т1 и STIR) и нижняя строчка КТ в режиме мягкотканного окна, костного окна и в формате SSD).

scan_plan_4 scan_plan_5

Метод 3D-реконструкции тонких срезов на МРТ позволяет визуализировать трехмерные изображения артерий и вен, а так же других некоторых анатомических областей, а на КТ пространственные реконструкции скелета очень хорошо используются при планировании нейрохирургических и ортопедических операциях.

scan_plan_6

Демонстративный пример различия 2х методов (КТ и МРТ), проведенных одному и тому же пациенту с крупной опухолью в крестце. На МРТ хорошо видна структура собственно опухолевого конгломерата (можно оценить структуру опухоли, однородность, наличие кист или некроза, а так же увидеть её границы). На КТ можно оценить сохранность костной ткани или узнать структуру кости в толще опухолевого мягкотканного конгломерата (обрастает ли опухоль кость или внедряется в кость, разрушает ли кость или приводит к её патологическому уплотнению, а так же оценить степень разрушения костно ткани).

scan_plan_7

В данном примере пациент с компрессионным переломом тела позвонка. МРТ визуализирует контур кости и может выявить отёк костного мозга в позвонке (то есть сделать вывод о свежем или старом переломе). КТ хорошо демонстрирует структуру костно ткани самого позвонка, наличие костных отломков, их число, размеры, смещение, в особенности что важно в отношении заднего опорного комплекса позвонка (суставных отростки, дужки, ножки позвонка), что крайне важно для планирования ведения данного пациента (консервативное или операционное), а так же в планировании оперативного лечения или использовании самого исследования во время операции (навигация).

scan_plan_8

Матрица и толщина среза

Срез (скан) на МРТ представляет собой не просто плоское изображение на экране. Срез имеет некоторые особенности, которые характеризуют качество картинки на нём.

Срез имеет два основных параметра: матрица (количество пикселей - маленьких точек или квадратиков в плоскости, каждая из которых имеют высоту и ширину в координатной сетке по оси x и оси y) и толщина среза (то есть к оси X и Y добавляется толщина слоя или третье измерение - высота = Z в пространственной координатной клетке).

matrix_and_slice_mri

На сопровождающейся картинке демонстрируется отличие просто пикселя (точки - мельчайшего элемента изображения в координатной сетке среза), от так параллелепипеда - вокселя (кубика - мельчашего элемента изображения в пространственной координатной клетке) с учётом толщины среза.

voxel_and_pixel_mri

Матрица может быть вытянутая (одна из сторон шире или уже другой) или квадратной (сторона А = стороне В или ширина по ости X равна ширине по оси Y). Если используется квадратная матрица, а ширина среза превышает значение матрица - можно говорить об анизотропном вокселе (то есть параллелепипеде). Если используется квадратная матрица, и ширина среза равна значению матрицы - следует говорить об изотропном вокселе (то есть кубе). Это в дальнейшем может повлиять на внешнем виде реформатов, то есть использовании срезов для построения срезов в других плоскостях, используя только срезы в одной плоскости для визуализации данной анатомической области в других ракурсах (в плоскостях других срезов - например когда есть только поперечные срезы, а мы с помощью компьютерной обработки желаем построить из них продольный срез).

slice_thinkness_1

В медицинских кругах и среди пациентов есть расхожее мнение о том, что, чем ТОНЬШЕ срез ЛУЧШЕ качество диагностики. Очень частым аргументом в пользу этого мнения служит представление о том что мелкое образование может быть пропущено, когда оно попадает в зазор между срезами или на край толстого среза, в результате чего оно оказывается пропущенным, а в итоге из него может развиться раковая опухоль.

В действительности эта точка зрения весьма поверхностна, хотя и не лишена логики всё же не является справедливой.

В большинстве случаев в повседневной работе на МРТ используется срез с толщиной от 3 до 5 мм. В подавляющем большинстве случаев такая толщина среза оказывается достаточной для успешной диагностики почти всех патологических процессов. В данном случае ожидать наличия некого образования тоньше 5мм, которые не попадёт в срез практически исключено, так как срезы проходят в 3х плоскостях и данный мелкий очажок должен быть очень ловким, что бы избежать попадания во все три плоскости сканирования, каждая из которых осуществляет нарезку в 3х плоскостях. Таким образом, такой очаг должен быть в 3 раза тоньше 5мм что бы исключительно по теории вероятности не попасть ни разу в плоскость сканирования. Но вся проблема в его диагностики даже не в том, что он не попадёт в срез, а совершенно в другом. В данном случае следует сделать отступление и сказать, о том что именно внешний вид (морфология) на МРТ позволяет отнести одно образование к одной группе патологических процессов, а другое к другой. Внешний вид образования размерами от 5мм и менее имеет вид одной точки на картинке. В этом смысле даже в случае нахождения "не ясной точки" в органе совершенно не означает наличие раковой опухоли в начальной стадии, а большей степени является помехой, ошибкой обсчёта изображения(артефактом) или мелкой нормальной анатомической структурой (сосуд, нерв) или анатомической особенностью его строения или ещё чем-то, что уже выходит за пределы диагностической эффективности метода. Практически в любом исследовании любого пациента можно найти очаг более 5мм, который затруднительно толковать как нечто конкретное и иметь 100% обоснования для своей точки зрения. И тонкий срез совершенно не решает этих задач.

slice_thinkness_2

При всём выше сказанном тонкий срез добавляет проблем для картинки как видно на представленных срезах. Тонкий срез следует использовать в исключительных случаях, которые известны врачу рентгенологу с применением специально настроенных программ, которые сделаны для конкретных анатомических областей и настроены на решение конкретных медицинских диагностических задач. Например тонкий срез для изучения отдельных нервов на цистернографии (импульсная последовательность практически бинарного черно-белого цвета, позволяющая лишь контурно видеть органы на границе фаз жидкость/мягкая ткань) или использовать тонкие срезы для планирования стереотаксической радиохирургии (гамма-нож).

slice_thinkness_3

Противопоказания к проведению МРТ

МРТ является безвредным и широко используемым диагностическим методом, но, тем не менее имеет ограничения, которые делятся на абсолютные (исследование не допустимо!) и относительные (исследование нежелательно, но возможно при клинической незаменимости и важности для жизни пациента).

not_for_mri

Абсолютные противопоказания

  1. установленный кардиостимулятор (изменения магнитного поля могут изменять его работу и нарушать сердечный ритм, что создаёт угрозу сердечного ритма и сократимости миокарда) - МРТ ИССЛЕДОВАНИЕ НЕДОПУСТИМО по жизненным показаниям!
  2. ферромагнитные или электронные имплантаты среднего уха (риск повреждения внутреннего уха или поломка самого аппарата),
  3. большие металлические имплантаты и осколки (инородные тела не ясной природы, возможно металлические),
  4. магнитные металлические тела, имплантаты: аппарат Илизарова или эндопротезы (в области исследования приводят к отсутствию визуализации, если данные инородные тела не в области исследования процедура допустима в большинстве случаев),
  5. клипсы, стенты и кава-фильтры брюшной полости (риск развития внутреннего кровотечения),
  6. внутренние инъекторы инсулина (может быть повреждение микросхем или батареек),
  7. масса тела более 150 кг (в некоторых случаях 120-130 кг уже недопустимо),
  8. иная причина, заставляющая медицинский персонал считать, что исследование будет опаснее болезни или создавать угрозой жизни пациента (в таких случаях требуется собирать консилиум или требовать у родственников/самого пациента/опекуна информированного согласия о проведении исследования).

Относительные противопоказания

  1. клаустрофобия,
  2. эпилепсия,
  3. беременность (в особенности первый триместр),
  4. крайне тяжелое состояние больного,
  5. невозможность для пациента сохранять неподвижность во время обследования.

Артефакты на МРТ

Артефакты на МРТ - это изменения на снимках, которые нарушают или затрудняют визуализацию, а так же симулируют наличие не существующих изменений или маскируют изменения, имеющие место быть в действительности, но в силу данных помех не видимые на снимке.

Артефакты бывают совершенно разнообразные, зависящие от работы аппарата, наличия инородного материала в области исследования или физологических особенностей пациента, но тем не менее все они подразделяются на группы по причине или проявлению.

Артефакт наложения вызван неправильным планированием срезов - ошибка оператора МРТ, исправляется увеличением поля обзора и зависит от опыта медицинского персонала, а так же от настройки аппарата поставщиком оборудования.

artefactung_mri_3

Артефакт неоднородности магнитного поля - вызван наличием металлических предметов в непосредственной близости от области исследования. Так в данном случае из-за брекетов на зубах возникает ложное изображение кровоизлияния в бороздах у основания лобной доли. Данные артефакты не вызывают недоумения у специалистов - врачей МРТ, но могут смущать лечащего врача, который не имеет представления о возможных искажениях, вызванных железом, расположенным рядом с зоной исследования.

artefactung_mri_4

Артефакт от металла - тот же артефакт как и от неоднородности поля, но в зоне исследования он способен скрывать целую анатомическую область, не затрудняя диагностику, а делая её полностью невозможной. В то время как обычная рентгенография отлично демонстрирует расположение эндопротеза коленного сустава относительно большеберцовой и бедренной кости.

artefactung_mri_6

Артефакт от движения. Во время прохождения МРТ важно сохранять неподвижность в течении всей процедуры сканирования. Иначе на картинке появляются элементы динамической не резкости и размытости, что иногда затрудняет диагностику, а иногда делает её полностью не возможной.

artefactung_mri_5

Артефакт потока. В организме человека всё время движется не только кровь и сердце, но её и спинномозговая жидкость в полости черепа и позвоночном канале. При МРТ позвоночника в грудном отделе часто встречаются участки "выпадения сигнала" обусловленные потоковым движением спинномозговой жидкости, что у делитантов создаёт ложное впечатление о наличии дополнительных образований в позвоночном канале, которых на самом деле нет.

artefactung_mri_1

Иногда артефакты потока в норме отсутствуют и возникают при появлении турбулентности (завихрении) движения. Например когда потоку спинномозговой жидкости препятствует киста в позвоночном канале, не видная на обычных томограммах, но очевидная по наличию завихрений потока на её краях и небольшому смещению спинного мозга.

artefactung_mri_2

Контрастное усиление

При необходимости по ходу исследования врач может рекомендовать пациенту контрастное усиление.

Контрастное усиление - это внутривенное введение специального, не опасного для здоровья, препарата, который избирательно накапливается в большем количестве в изменённых тканях в разных пропорциях и объёмах в зависимости от типового патологического процесса и его фазы течения. Это помогает врачу определить характер заболевания.

Для чего используется контрастное усиление:

  • дифференциальная диагностика (для уточнения характера выявленных изменений),
  • уточнения границ образования (распространенности патологического процесса и точного определения его границ),
  • для уточнения числа и размеров метастазов, например в мозге или печени,
  • для планирования стереотаксической радиохирургии,
  • для оценки рецидива или продолженного роста опухоли после её удаления или облучения,
  • для оценки фазы активности воспалительно-демиелинизирующего процесса (рассеянный склероз),
  • МРТ артерий и вен головного мозга не требует введения контраста (на основе физических изменений, формируемых движением потока крови в сосудах на МРТ строится картина в режиме Time-Of-Fly или Phase-contrast).

Иногда у пациентов возникают сомнения в необходимости контрастного усиления. Что в общем-то естественно, но не рационально. Контраст используется не в качестве дополнительной "услуги", которую врач добавляет в обследование для увеличения ценника, а является важным инструментом повышения диагностической эффективности метода МРТ. С контрастом можно сказать гораздо больше о выявленном неизвестном или сомнительном патологическом процесса, а иногда сделать исчерпывающие выводы. Таким образом, если врач рекомендует проведение МРТ с контрастом - не следует возражать. Однако, не стоит самостоятельно, без рекомендации специалиста настаивать на проведении МРТ с контрастом, так как в большинстве случаем его использование не оправдано. Так же не стоит рассчитывать, что контраст выявит ВСЁ что есть, могло бы быть или с контрастом изображение станет безупречным. Контраст лишь добавляет необходимой информации, которая порой может быть противоречивой и результаты исследования с контрастом лишь добавляют информации врачу для формирования выводов, а не делаю исследование абсолютно достоверным и решающим все клинические вопросы.

spinal_neurinoma_native+gd

На данном примере хорошо видно как выглядит доброкачественная опухоль нервного корешка в позвоночном канале на исследлвании без контраста (нативном МРТ) и после введения контраста (опухоль интенсивно и однородно накапливает контраста, становится яркой).

Контрастный препарат представляет собой гипоаллергенное средство, так как оно является не ионным гипоосмолярным хелатным комплексом щелочноземельного метала гадолиния. На сегодняшний день на рынке много коммерческих названий контрастных препаратов, например в МРТ используются парамагнетики: Магневист, Примовист.

Способа введения контраста в МРТ обычно 2: внутривенно струйно (обычный внутривенный укол) и динамическое контрастирование (используется быстрое введение контраста в ходе сканирования (оператором МРТ через катетер или с помощью специального аппарата - инъектора).

Обычно используется введение контраста из расчёта 0,1мл на 10кг массы тела пациента. Обычно вводится от 10 до 20мл контраста.

spinal_neurinoma+gd

Другой пример демонстрации использования контраста на МРТ, где слева направо показано как выглядит на МРТ невринома позвоночном канале с контрастом: 1 на тонком срезе (изображение не выглядит самым лучшим - это возвращает нас к вопросу о ложном впечатлении необходимости "тонкого среза"), 2 на обычном МРТ в режиме Т1 и 3 на МРТ в режиме Т1 с вычитанием жировой ткани (режим Fat Saturation) - который приводит к наилучшей визуализации структуры и границ опухоли в позвоночном канале.

Автор статьи: врач-рентгенолог, к.м.н. Власов Евгений Александрович